

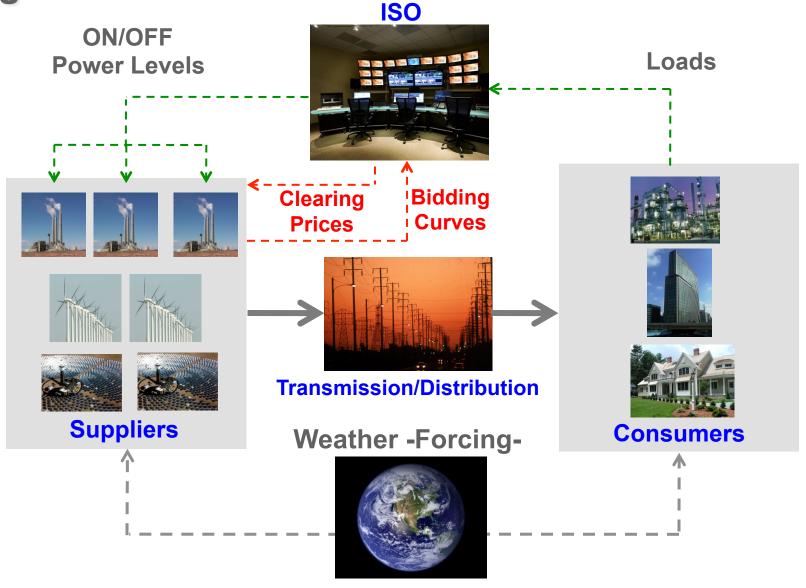
Scalable Dynamic Optimization

Mihai Anitescu

Department of Statistics University of Chicago

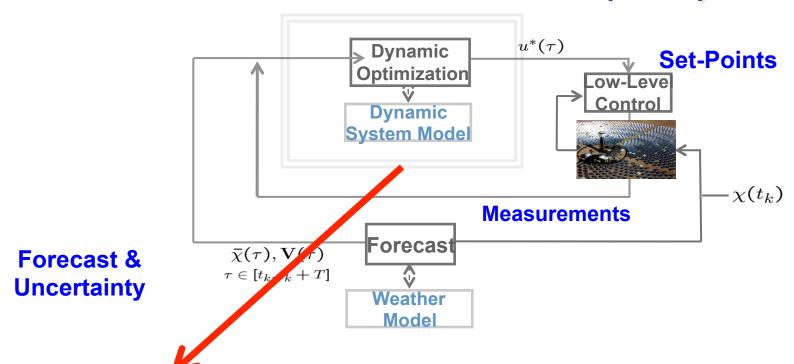
With: Victor Zavala

Big Picture



Real-Time Optimization is Pervasive in Energy: Estimation, Management, Control Requires Extreme-Scale NLP Solvers: Model Size and Short Time Scales

Model Predictive Control (MPC)



Need for MPC

- Traditional control approximates the model based on output (mostly) ignoring its physical structure.
- High variability in forcing and nonlinearity requires a physical modelbased approach.
- Far more computationally intensive bottleneck is optimization problem.

Dynamic Optimization for MPC

$$\min_{u(\tau),z(t)} \int_{t}^{t+T} \varphi\left(z(\tau),,u(\tau),\omega(t)\right) d\tau$$
s.t.
$$\frac{dz}{d\tau} = \mathbf{f}(z(\tau),u(\tau),\omega(t))$$

$$0 \geq \mathbf{h}(z(\tau),u(\tau),\omega(t))$$

Fundamental Limitations of Off-The-Shelf Optimization

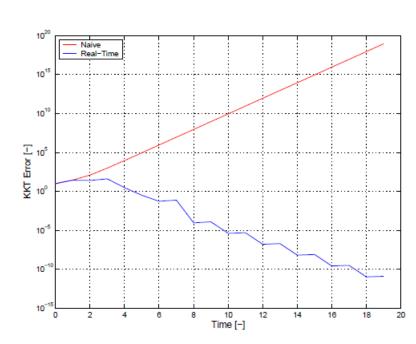
Example DO:

$$\min_{x(t)} \frac{1}{2} (x(t) - \eta(t))^2 + \frac{1}{2} x(t)^2 \cdot \eta(t)$$

Off-the-Shelf: Solve to Given Accuracy (Neglect Dynamics)

$$\epsilon^{j}(t) = \|\nabla_{x} f(x^{j}(t), \eta(t))\| \le \delta_{\epsilon}$$

Real-Time (Z & A): One SQP Iteration per step



Outline of the Talk

- 1. Generalized Equation / "Incomplete Optimization"
- 2. Exact Differentiable Penalty Approach for Accuracy and Reduced Latency
- 3. Numerical Case Studies
- 4. Conclusions and Future Work

1.Generalized Equation / "Incomplete Optimization"

MPC as Dynamic Generalized Equation (Z & A)

Context: Parametric NLP
$$\min_{x \in X} f(x,t)$$
, s.t. $c(x,t) = 0$

KKT system for QP

Time linearization of Optimality Conditions: Find $\bar{w}_t = [\bar{x}_t \ \bar{\lambda}_t]$

$$0 \in F(w_{t_0}^*, t) + \nabla_w F(w_{t_0}^*, t_0)(w - w_{t_0}^*) + \mathcal{N}_W(w)$$

Note: Canonical Form Identical to Time-Steping for DVI

min
$$\nabla_x f(x_{t_0}^*(t)^T \Delta x + \frac{1}{2} \Delta x^T \nabla_{xx} \mathcal{L}(w_{t_0}^*, t_0) \Delta x$$

s.t. $c(x_{t_0}^*, t) + \nabla_x c(x_{t_0}^*, t_0)^T \Delta x = 0$
 $\Delta x \ge -x_{t_0}^*$

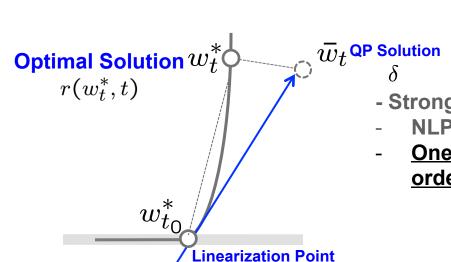
Exact Solution Satisfies:

$$\delta \in F(w_{t_0}^*, t_0) + \nabla_w F(w_{t_0}^*, t_0)(w - w_{t_0}^*) + \mathcal{N}_W(w) \qquad \delta = F(w_{t_0}^*, t_0) - F(w_{t_0}^*, t)$$

$$\delta = F(w_{t_0}^*, t_0) - F(w_{t_0}^*, t)$$

From Lipschitz Continuity of strongly regular GE: $||w_t^* - \overline{w}_t|| \le L\Delta t^2$

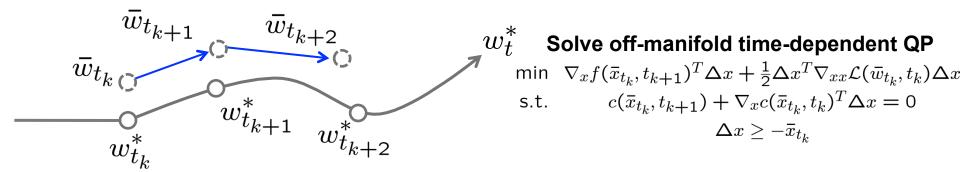
$$\left\| w_t^* - \overline{w}_t \right\| \le L \Delta t^2$$



- Strong Regularity Requires SSOC and LICQ
 - NLP Error is Bounded by LGE Perturbation
 - One QP solution from exact manifold is secondorder accurate

One-QP per step stabilizes

But for linearized DO I am never EXACTLY on the manifold: What then?



Theorem (elucidating an issue posed by Diehl et al.)

- A: LGE is Strongly Regular at ALL $w_{t_k}^*$ e.g. NLP satisfies LICQ and SOSC everywhere Then: For sufficiently small Δt , we can track the manifold stably, solving 1 QP per step

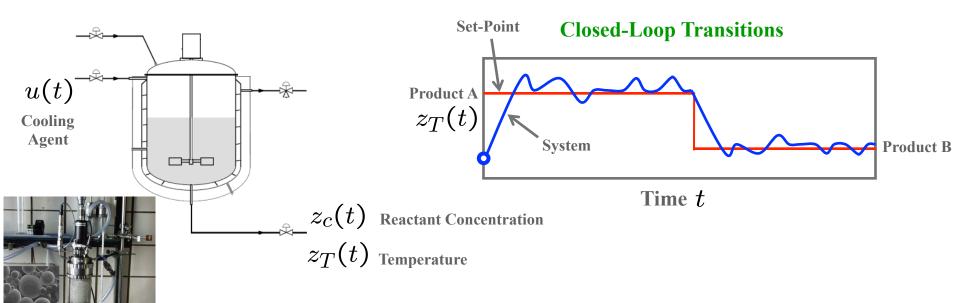
$$\|\bar{w}_{t_k} - w_{t_k}^*\| \le L_{\psi} \delta_r \Rightarrow \|\bar{w}_{t_{k+1}} - w_{t_{k+1}}^*\| \le L_{\psi} \delta_r$$

Moreover: Stability Holds Even if QP Solved t $O(\Delta t^2)$ accuracy. Can use iterative methods. Much less effort per step and better chances for real-time performance!

Need for more features of DO solvers

- One QP per step may still be too much
- Moreover I may need also good global and fast local convergence properties as well, it is not all about asymptotics!
- Sometimes one switch regimes, the optimal point moves far away, and you still want to be able to track well. – MPC algorithm must exhibit global convergence and fast local convergence (i.e. Newton)!
- Also, power grid problems can be huge (US ~ 1 100 Billion Variables). Need scalable solvers.

Control of Polymerization Reactor



2. Exact Differentiable Penalty Approach for Accuracy and Reduced Latency

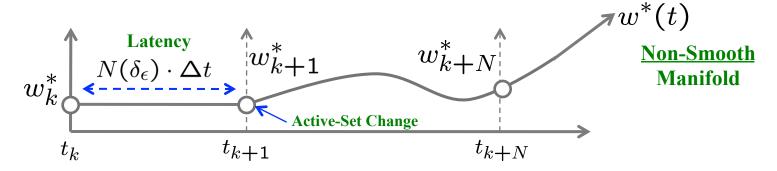
Technical Problem

$$\min_{x} f(x,t)$$

s.t. $h(x,t) = 0$, (λ)
$$w^{T} = [x^{T}, \lambda^{T}]$$

 $x \ge 0$.

Solution forms Time-Moving and Non-Smooth Manifold



- Challenge is to Track Manifold Accurately (Classical Optimization) AND Stably (Latency Conscious: A good Step, Computer Fast)

Technical Problem

- Challenge is to Track Manifold Accurately AND Stably (Get Good Step with Minimum Latency)
- This requires NLP Solvers with the Following Features:
 - A) Classical Optimization Oriented:
 - 1) Superlinear Convergence (Newton-Based)
 - 2) Scalable Step Computation (Iterative Linear Algebra)
 - B) Latency Conscious:
 - 3) Asymptotic Monotonicity of Minor Iterations (Makes Progress in O(N))
 - 4) Active-Set Detection and Warm-Start

- Existing Solvers Tend to Fail at Least One Feature
 - Interior Point: 4, and to some extent, 2,3
 - Augmented Lagrangian: 1
 - **SQP: 2**

Exact Differentiable Penalty Functions (EDPFs)

Consider Transformation using Squared Slacks

$$\min_{x} f(x) \qquad \qquad \min_{x,z} f(x)$$

s.t. $h(x) = 0$
s.t. $h(x) = 0$
 $x \ge 0$
 $x = z^2$

Equivalent To:

$$\min_{z} f(z^{2})$$
s.t. $h(z^{2}) = 0$

$$\mathcal{L}(z^{2}, \lambda) = f(z^{2}) + \lambda^{T} h(z^{2})$$

$$\nabla_{z} \mathcal{L}(z^{2}, \lambda) = 2 \cdot Z \cdot \left(\nabla f(z^{2}) + \nabla h(z^{2})\lambda\right)$$

$$= 2 \cdot X^{1/2} \nabla_{x} \mathcal{L}(x, \lambda)$$

Apply DiPillo and Grippo's Penalty Function DiPillo, Grippo, 1979, Bertsekas, 1982

$$P(x,\lambda,\alpha,\beta) = \mathcal{L}(x,\lambda) + \frac{1}{2}\alpha c(x)^T c(x) + \left[2\beta \nabla_x \mathcal{L}(x,\lambda)^T X \nabla_x \mathcal{L}(x,\lambda)\right]$$

Solve NLP Indirectly Through EDPF Problem:

$$\min_{x,\lambda} P(x,\lambda,\alpha,\beta) \text{ s.t. } x \ge 0$$

Exact Differentiable Penalty Functions with Bound Constraints

$$P(x,\lambda,\alpha,\beta) = \mathcal{L}(x,\lambda) + \frac{1}{2}\alpha h(x)^T h(x) + 2\beta \nabla_x \mathcal{L}(x,\lambda)^T X \nabla_x \mathcal{L}(x,\lambda)$$

Advantages

- EDPF Differentiable Everywhere
- Unconstrained Problem with Box Constraints, scalable, superlinear, warm-start
- Makes Progress at Each Iteration (latency)

Questions

- Under What Conditions Do Minimizers of EDPF and NLP Coincide?
- How to Deal with Nonconvexity?
 - Detect and Exploit Negative Curvature
- Can We Enable Scalability AND NOT NEED THIRD DERIVATIVE?
 - First and Second Derivatives
 - Iterative Linear Algebra

The big picture

- Combine Bertsekas bound constrained EDPF with Lin-More trust region.
- Superlinear convergence w/o Maratos from EDPF
- Matrix free from Lin-More
- Improvement in Order N from EDPF
- Warm-Start and active set detection from Lin-More
- And maybe this will help optimization proper

- Our contributions:
- Formalizing bound constrained EDPF properties
- Using trust-region to get rid of the third derivative while preserving both global convergence of EPF and superlinear convergence of Newton.
- Demonstrating that the approach scales well.

Derivatives and Minimizers of EDPF

$$P(x,\lambda,\alpha,\beta) = \mathcal{L}(x,\lambda) + \frac{1}{2}\alpha h(x)^T h(x) + 2\beta \nabla_x \mathcal{L}(x,\lambda)^T X \nabla_x \mathcal{L}(x,\lambda)$$

In Compact Form

$$P_{\alpha,\beta}(w) = \mathcal{L}(w) + \frac{1}{2} \nabla_w \mathcal{L}(w)^T K_{\alpha,\beta}(w) \nabla_w \mathcal{L}(w)$$

$$K_{\alpha,\beta}(w) = \begin{bmatrix} 4\beta X & \\ & \alpha I_m \end{bmatrix}$$

First Derivative

$$\nabla P = \nabla \mathcal{L} + \nabla^2 \mathcal{L} K \nabla \mathcal{L} + \frac{1}{2} \Gamma \mathrm{diag}(\nabla \mathcal{L}) \nabla \mathcal{L}$$

Is KKT Point of EDPF a KKT Point of NLP?

$$\sqrt{X}\nabla_x P = 0
\nabla_\lambda P = 0$$

$$\sqrt{X}\nabla_x \mathcal{L}(x,\lambda) = 0
\nabla_\lambda \mathcal{L}(x,\lambda) = 0$$

Theorem:

Under LICQ and SC there exist α, β , such that KKT Point of EDPF is KKT point of NLP.

Proof:

$$\begin{bmatrix} \mathbb{I}_{n\times n} + 4\beta\sqrt{X}\nabla_{x,x}\mathcal{L}(w^*)\sqrt{X} + 2\beta\mathrm{diag}\left(\nabla_x\mathcal{L}(w^*)\right) & \alpha\sqrt{X}\nabla_xh(x^*)^T \\ 4\beta\nabla_xh(x^*)\sqrt{X} & \mathbb{I}_{m\times m} \end{bmatrix} \begin{bmatrix} \sqrt{X}\nabla_x\mathcal{L}(w^*) \\ h(x^*) \end{bmatrix} = \begin{bmatrix} \mathbf{0}_n \\ \mathbf{0}_m \end{bmatrix}.$$

Matrix on LHS is PD For sufficient large $\ \alpha$ and sufficiently small $\ \beta$.

Derivatives and Minimizers of EDPF

Second Derivative

$$\nabla^2 P \cdot u = \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} K \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} \mathrm{diag}(\nabla \mathcal{L}) \Gamma \cdot u + \Gamma \mathrm{diag}(\nabla \mathcal{L}) \nabla^2 \mathcal{L} \cdot u + \nabla (\nabla^2 \mathcal{L} \cdot u) K \nabla \mathcal{L} \nabla$$

High-Order Term Vanishes at KKT Point Because $K\nabla \mathcal{L} = 0$.

Is Strict Minimizer of EDPF a Strict Minimizer of NLP?

Theorem:

- i) If KKT Point satisfies SSOC for NLP then there exist α, β , such that it satisfies SSOC of EDPF.
- ii) If KKT Point does not satisfy SSOC for NLP then there exist α, β , such that this is not a strict local minimizer of EDPF.

Proof: Relies on Analysis of Projected Hessian where N is null-space matrix.

$$\begin{aligned}
\nu^{T} N^{T} \nabla^{2} P N \nu \\
&= \begin{bmatrix} \nu_{x}^{T} N_{x}^{T} & \nu_{\lambda}^{T} \end{bmatrix} \begin{bmatrix} H & A^{T} \\ A & \end{bmatrix} \begin{bmatrix} N_{x} \nu_{x} \\ \nu_{\lambda} \end{bmatrix} \\
&+ \begin{bmatrix} \nu_{x}^{T} N_{x}^{T} & \nu_{\lambda}^{T} \end{bmatrix} \begin{bmatrix} H & A^{T} \\ A & \end{bmatrix} \begin{bmatrix} 4\beta X & 0 \\ 0 & \alpha \mathbb{I}_{m} \end{bmatrix} \begin{bmatrix} H & A^{T} \\ A & \end{bmatrix} \begin{bmatrix} N_{x} \nu_{x} \\ \nu_{\lambda} \end{bmatrix}.
\end{aligned}$$

Derivatives and Minimizers of EDPF

A "Strong" Dennis-More Condition

Exact Hessian

$$\nabla^2 P \cdot u = \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} K \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} \mathrm{diag}(\nabla \mathcal{L}) \Gamma \cdot u + \Gamma \mathrm{diag}(\nabla \mathcal{L}) \nabla^2 \mathcal{L} \cdot u + \nabla (\nabla^2 \mathcal{L} \cdot u) K \nabla \mathcal{L}.$$

Approximate Hessian

$$Q \cdot u = \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} K \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} \operatorname{diag}(\nabla \mathcal{L}) \Gamma \cdot u + \Gamma \operatorname{diag}(\nabla \mathcal{L}) \nabla^2 \mathcal{L} \cdot u$$

Approximate Hessian is Asymptotically Convergent

$$(Q(w) - \nabla^2 P(w)) \cdot u = \nabla(\nabla^2 \mathcal{L}(w) \cdot u) K(w) \nabla \mathcal{L}(w)$$

$$= o(u) O(\|w - w^*\|), \text{ because } K(w^*) \nabla \mathcal{L}(w^*) = 0$$

$$\stackrel{w \to w^*}{=} 0.$$

Implication:

- We can drop third-order terms and derive quasi-Newton algorithms that retain superlinear convergence.
- Much easier implementation.

Trust-Region Newton

$$\min_{x,\lambda} \ P_{lpha,eta}(w) ext{ s.t. } w \in \Omega$$

- Need to detect and exploit directions of negative curvature
- Use Trust-Region Newton Framework of Lin and More (TRON)
 - 1) Determine Activity Using Cauchy Point

$$[w^c, \mathcal{A}^c] = \text{Proj}[w - \alpha^c \nabla P(w)]$$

2) Compute Search Step by Solving Trust-Region QP using Steihaug's Preconditioned Conjugate Gradient Approach (PCG)

$$\begin{aligned} & \underset{\Delta w}{\min} & & \nabla P(w)^T \Delta w + \frac{1}{2} \Delta w^T Q(w) \Delta w \\ & \text{s.t.} & & \Delta w_i = 0, \quad i \in \mathcal{A}^c \\ & & & & \|\Delta w\| \leq \Delta \end{aligned}$$

- 3) Check Progress Over Cauchy Step and Update Trust Region Radius
- Approach Converges to Strict Local Minimizers of NLP Globally and Superlinearly
- Requires α, β , to Satisfy Conditions of Previous Theorems

Computational Scalability

Derivatives

- EDPF Hessian Can be Assembled using Hessian and Jacobian Vector Products

$$\nabla^2 \mathcal{L} \cdot \nu = \begin{bmatrix} H & A^T \\ A & \end{bmatrix} \begin{bmatrix} \nu_x \\ \nu_\lambda \end{bmatrix} = \begin{bmatrix} H \cdot \nu_x + A^T \cdot \nu_\lambda \\ A \cdot \nu_x \end{bmatrix}. \quad \text{Kernel}$$

$$Q \cdot u = \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} K \nabla^2 \mathcal{L} \cdot u + \nabla^2 \mathcal{L} \mathrm{diag}(\nabla \mathcal{L}) \Gamma \cdot u + \Gamma \mathrm{diag}(\nabla \mathcal{L}) \nabla^2 \mathcal{L} \cdot u$$

Requires 2 Unique Kernels

PCG

$$\begin{aligned} & \min_{s_d^k} \, g^{kT} N^k s_d^k + \frac{1}{2} s_d^{kT} (N^k)^T Q^k N^k s_d^k \\ & \text{s.t.} \, \|D^k N_j^k s_d^k\| \leq \Delta^k. \end{aligned}$$

- Does Not Require Assembling Reduced Hessian
- Requires Action of Inverse Preconditioner $(D^k)^{-1} \cdot r$
- Incomplete Cholesky, PARDISO, Algebraic Multigrid
- Inertia Detected Externally (Not by Linear Solver)

3. Numerical Results

Algorithmic Behavior

min
$$(x_1 - 1)^2 + (x_2 - 2)^2 + (x_3 - 3)^2 + x_1 x_4$$

s.t. $x_1 x_4 + x_1 x_2 + x_3 = 4$, (λ)
 $x_1, x_2, x_3, x_4 \ge 0$.

					TR	Min Eig			
k	P^k	g_{Proj}^k	$ ho^k$	$\ s^k\ $	$\ \pmb{\Delta}^k \ $	$ Q^k - H^k $	$\underline{\lambda}(Q_d^k)$	$\underline{\lambda}(H_d^k)$	$card(\mathcal{A}^k_P)$
0	25.150	2.0e+2							0
1	3.449	5.9e+1	+3.26	2.5e-1	261.9	2.0e+2	-2.48	-22.67	0
2	3.449	5.9e+1	-0.70	0.0e+0	523.9	5.8e+1	-2.48	-22.67	0
3	3.449	5.9e+1	-0.62	0.0e+0	131.0	5.8e+1	-2.48	-22.67	0
4	3.449	5.9e+1	-0.33	0.0e+0	32.0	5.8e+1	-2.48	-22.67	0
5	3.449	5.9e+1	-0.28	0.0e+0	8.0	5.8e+1	-2.48	-22.67	0
6	1.533	2.5e+1	+0.37	2.0e+0	2.0	5.8e+1	-2.48	-22.67	0
7	0.945	1.6e+0	+0.52	$1.9e{-1}$	2.0	2.9e+1	+0.15	-0.39	0
8	0.944	$4.9e{-1}$	+0.48	2.6e - 3	4.0	1.9e+0	+0.19	+0.37	0
9	0.943	$4.5e{-1}$	+0.93	$1.4e{-3}$	4.0	$4.0e{-1}$	+0.19	+0.25	0
10	0.909	$2.3e{-1}$	+0.94	$1.8e{-1}$	8.0	$3.4e{-1}$	+0.40	+0.40	1
11	0.908	1.7e-6	+0.99	8.7e-3	16.0	3.1e-6	+0.38	+0.38	1

- Trust Region Management Critical Line Search Solvers Fail (IPOPT)
- High Nonlinearity at Beginning of Search (Third order term induces it)

Optimal Control Problem

$$\min \int_0^T \left(\alpha_c \cdot (c(\tau) - \overline{c})^2 + \alpha_t \cdot (t(\tau) - \overline{t})^2 + \alpha_u \cdot (u(t) - \overline{u})^2 \right) d\tau$$

$$\text{s.t. } \dot{c}(\tau) = \frac{1 - c(\tau)}{\theta} - p_k \cdot \exp\left(-\frac{p_E}{t(\tau)}\right) \cdot c(t)$$

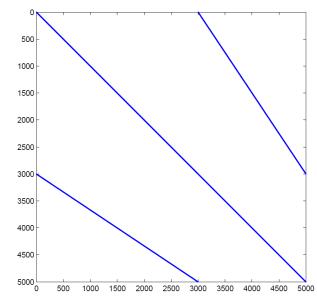
$$\dot{t}(\tau) = \frac{t_f - t(\tau)}{\theta} + p_k \cdot \exp\left(-\frac{p_E}{t(\tau)}\right) \cdot c(\tau) - p_\alpha \cdot u(\tau) \cdot (t(\tau) - t_c)$$

$$c(\tau), t(\tau), u(\tau) \ge 0, \quad \tau \in [0, T]$$

$$c(0) = c(\tau_{sys}), \quad t(0) = t(\tau_{sys}).$$

N	n	m	n_w	$nnz(abla^2\mathcal{L})$	nnz(Q)	%dens $(abla^2\mathcal{L})$	%dens (Q)
500	1,500	1,000	2,500	10,486	26,492	2.0e-1	4.0e-1
1,000	3,000	2,000	5,000	20,996	52,972	8.4e-2	2.0e-1
5,000	15,000	10,000	25,000	104,996	264,972	1.6e-2	4.0e-2
10,000	30,000	20,000	50,000	209,996	529,972	8.3e-3	2.1e–2

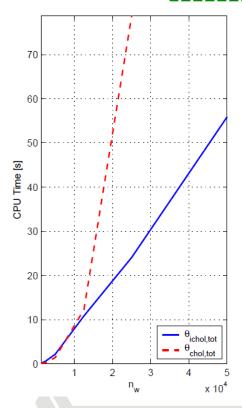
- Discretize and Scale Problem Up by Increasing Horizon N
- Sparsity of Augmented System Retained in Hessian of EDPF
- Drop Tolerance Incomplete Cholesky of 1e-4

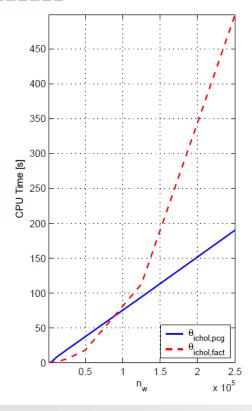


Scalability

Incomp	lete (Cholesk	v Full	Cholesky
mcomp	icic '	CHUICSK	y run	Choicsky

n_w	it_{pcg}	$ heta_{ichol,pcg}$					
1,250	17	8.5e-2	$3.1e{-2}$	$1.1e{-1}$	2.7e-2	3.3e-2	6.0e-2
2,500	24	4.9e-1	$1.3e{-1}$	$6.2e{-1}$	$1.1e{-1}$	$1.5e{-1}$	$2.6e{-1}$
5,000	29	1.7e+0	$4.4e{-1}$	2.2e+0	5.7e-1	8.5e-1	1.4e + 0
12,500	31	9.0e+0	1.8e+0	1.1e + 1	3.8e + 0	8.4e+0	1.2e + 1
25,000	31	1.8e+1	5.5e + 0	2.4e+1	2.5e + 1	5.4e+1	7.8e+1
50,000	31	3.7e+1	1.8e+1	5.5e+1	-	-	-
125,000	31	9.4e+1	1.1e + 2	2.0e+2	-	-	-
250,000	31	1.9e+2	4.9e+2	6.8e+2	-	-	-





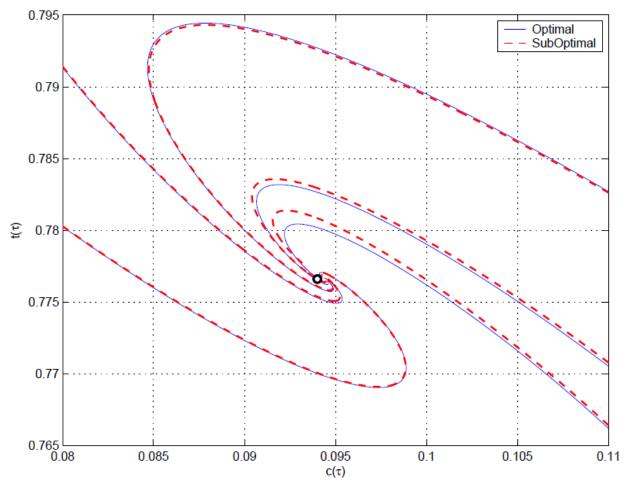
- Scalability of Full Cholesky Not Competitive
- Incomplete Cholesky Gives High Flexibility
 Can Specify Drop Tolerance to Reduce Latency
- PCG Iterations Scale Well
- Largest Problem Has 250,000 Variables

Active-Set Identification for the 2500 dimension case

		Case	1	Case 2				
k	P^k	g_{Proj}^k	$\mathcal{A}_P(w^k)$	n_{PCG}^k	P^k	g_{Proj}^k	$\mathcal{A}_P(w^k)$	n_{PCG}
0	4.05e+3	4.52e+3	44	-	1.21e+4	2.43e+5	173	-
1	1.14e + 2	4.70e+3	44	41	4.96e+2	5.76e+4	0	132
2	1.83e + 1	3.72e+3	119	32	9.48e+1	1.86e+3	0	45
3	1.83e + 1	1.55e+2	170	27	5.57e+0	3.27e+4	26	37
4	1.83e + 1	5.59e–6	173	17	3.98e+0	1.11e+3	43	26
5	-	-	_		3.98e+0	8.50e-6	44	13

- Case 1) Has 173 variables active at solution and initialized with 44
- Case 2) Has 44 variables active at solution and initialized with 173
- Cauchy Search Efficient at Detecting Activity (Allows for Large Changes Between Iterates)
- Number of PCG Iterations Do Not Degrade as Solution Approached (Compare with IP)

Early Termination on problem with N=100



- Run MPC Problem Terminating After 2 Major Iterations and 20 PCG iterations
- Reduced Latency by A Factor of 4 (Four)
- Convergence to Equilibrium Point (Warm-Starting Effective)

4. Conclusions and Future Work

- We derived NLP algorithms that enable:
 - 1) Superlinear Convergence (Newton-Based)
 - 2) Scalable Step Computation (Enable Iterative Linear Algebra)
 - 3) Asymptotic Monotonicity of Minor Iterations (Makes Progress)
 - 4) Active-Set Detection and Warm-Start
- Critical in "Fast" Real-Time Environments
- Proposed Approach: EDPF + Trust-Region Newton + PCG
 - 1) Newton-Based in Primal/Dual Space with Convergent Approximate Hessian
 - 2) Steihaug's PCG to Detect and Exploit Negative Curvatur
 - 3) PCG Improvement on EDPF Function
 - 4) Cauchy
- ToDo:
 - More Robust Implementation (Scaling, Trust-Region Update Rules, Ill-Conditioning)
 - Alternative Penalty Functions Requiring Only One Parameter
 - Preconditioning
 - Exploiting Special Structures
 - Comparison with Other NLP Solvers

